How to use the Extended Euclidean Algorithm manually?

Perhaps the easiest way to do it by hand is in analogy to Gaussian elimination or triangularization, except that, since the coefficient ring is not a field, one has to use the division / Euclidean algorithm to iteratively descrease the coefficients till zero. In order to compute both gcd(a,b) and its Bezout linear representation ja+kb, we keep track of such linear representations for each remainder in the Euclidean algorithm, starting with the trivial representation of the gcd arguments, e.g. a=1a+0b. In matrix terms, this is achieved by augmenting (appending) an identity matrix that accumulates the effect of the elementary row operations. Below is an example from one of my old posts. It computes the Bezout representation for gcd(80,62)=2  viz.  780962 = 2. See this answer for a proof and for conceptual motivation of the ideas behind the algorithm.
For example, to solve  m x + n y = gcd(m,n) one begins with
two rows  [m   1    0], [n   0    1], representing the two
equations  m = 1m + 0n,  n = 0m + 1n. Then one executes
the Euclidean algorithm on the numbers in the first column,
doing the same operations in parallel on the other columns,

Here is an example:  d =  x(80) + y(62)  proceeds as:

                      in equation form   | in row form
                    ---------------------+------------
                    80 =   1(80) + 0(62) | 80   1   0
                    62 =   0(80) + 1(62) | 62   0   1
 row1 -   row2  ->  18 =   1(80) - 1(62) | 18   1  -1
 row2 - 3 row3  ->   8 =  -3(80) + 4(62) |  8  -3   4
 row3 - 2 row4  ->   2 =   7(80) - 9(62) |  2   7  -9
 row4 - 4 row5  ->   0 = -31(80) -40(62) |  0 -31  40

The row operations above are those resulting from applying
the Euclidean algorithm to the numbers in the first column,

        row1 row2 row3 row4 row5
namely:  80,  62,  18,   8,   2  = Euclidean remainder sequence
               |    |
for example   62-3(18) = 8, the 2nd step in Euclidean algorithm

becomes:   row2 -3 row3 = row4  when extended to all columns.
In effect we have row-reduced the first two rows to the last two.
The matrix effecting the reduction is in the bottom right corner.
It starts as 1, and is multiplied by each elementary row operation, 
hence it accumulates the product of all the row operations, namely:

[731940][80621001] = [20731940]
Notice row 1 is the particular  solution  2 =   7(80) -  9(62)
Notice row 2 is the homogeneous solution  0 = -31(80) + 40(62),
so the general solution is any linear combination of the two:

       n row1 + m row2  ->  2n = (7n-31m) 80 + (40m-9n) 62

The same row/column reduction techniques tackle arbitrary
systems of linear Diophantine equations. Such techniques
generalize easily to similar coefficient rings possessing a
Euclidean algorithm, e.g. polynomial rings F[x] over a field, 
Gaussian integers Z[i]. There are many analogous interesting
methods, e.g. search on keywords: Hermite / Smith normal form, 
invariant factors, lattice basis reduction, continued fractions,
Farey fractions / mediants, Stern-Brocot tree / diatomic sequence.

0 comments:

Post a Comment

Don't Forget to comment